Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cytotherapy ; 25(9): 967-976, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330732

RESUMO

BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.


Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Pulmão/patologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fagocitose
2.
Pharmacol Res Perspect ; 9(5): e00873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34632734

RESUMO

We hypothesized whether propofol or active propofol component (2,6-diisopropylphenol [DIPPH] and lipid excipient [LIP-EXC]) separately may alter inflammatory mediators expressed by macrophages and neutrophils in lean and obese rats. Male Wistar rats (n = 10) were randomly assigned to receive a standard (lean) or obesity-inducing diet (obese) for 12 weeks. Animals were euthanized, and alveolar macrophages and neutrophils from lean and obese animals were exposed to propofol (50 µM), active propofol component (50 µM, 2,6-DIPPH), and lipid excipient (soybean oil, purified egg phospholipid, and glycerol) for 1 h. The primary outcome was IL-6 expression after propofol and its components exposure by alveolar macrophages extracted from bronchoalveolar lavage fluid. The secondary outcomes were the production of mediators released by macrophages from adipose tissue, and neutrophils from lung and adipose tissues, and neutrophil migration. IL-6 increased after the exposure to both propofol (median [interquartile range] 4.14[1.95-5.20]; p = .04) and its active component (2,6-DIPPH) (4.09[1.67-5.91]; p = .04) in alveolar macrophages from obese animals. However, only 2,6-DIPPH increased IL-10 expression (7.59[6.28-12.95]; p = .001) in adipose tissue-derived macrophages. Additionally, 2,6-DIPPH increased C-X-C chemokine receptor 2 and 4 (CXCR2 and CXCR4, respectively) in lung (10.08[8.23-29.01]; p = .02; 1.55[1.49-3.43]; p = .02) and adipose tissues (8.78[4.15-11.57]; p = .03; 2.86[2.17-3.71]; p = .01), as well as improved lung-derived neutrophil migration (28.00[-3.42 to 45.07]; p = .001). In obesity, the active component of propofol affected both the M1 and M2 markers as well as neutrophils in both alveolar and adipose tissue cells, suggesting that lipid excipient may hinder the effects of active propofol.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Excipientes/farmacologia , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Obesidade/metabolismo , Propofol/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Glicerol/farmacologia , Interleucina-10/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Fosfolipídeos/farmacologia , Ratos , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/efeitos dos fármacos , Receptores de Interleucina-8B/metabolismo , Óleo de Soja/farmacologia
3.
PLoS One ; 16(8): e0256021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415935

RESUMO

BACKGROUND: We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS: Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. RESULTS: BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. CONCLUSION: In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/patologia , Animais , Diafragma/patologia , Endotélio/patologia , Pulmão/patologia , Masculino , Ratos , Ratos Wistar , Respiração , Síndrome do Desconforto Respiratório/fisiopatologia , Volume de Ventilação Pulmonar/fisiologia
4.
Crit Care Med ; 49(9): e880-e890, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870913

RESUMO

OBJECTIVES: To ascertain whether systemic administration of mitochondria-rich fraction isolated from mesenchymal stromal cells would reduce lung, kidney, and liver injury in experimental sepsis. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Sixty C57BL/6 male mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. At 24 hours after surgery, cecal ligation and puncture and Sham animals were further randomized to receive saline or mitochondria-rich fraction isolated from mesenchymal stromal cells (3 × 106) IV. At 48 hours, survival, peritoneal bacterial load, lung, kidney, and liver injury were analyzed. Furthermore, the effects of mitochondria on oxygen consumption rate and reactive oxygen species production of lung epithelial and endothelial cells were evaluated in vitro. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of lung epithelial and endothelial cells from cecal ligation and puncture animals to mitochondria-rich fraction isolated from mesenchymal stromal cells restored oxygen consumption rate and reduced total reactive oxygen species production. Infusion of exogenous mitochondria-rich fraction from mesenchymal stromal cells (mitotherapy) reduced peritoneal bacterial load, improved lung mechanics and histology, and decreased the expression of interleukin-1ß, keratinocyte chemoattractant, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in lung tissue, while increasing keratinocyte growth factor expression and survival rate in cecal ligation and puncture-induced sepsis. Mitotherapy also reduced kidney and liver injury, plasma creatinine levels, and messenger RNA expressions of interleukin-18 in kidney, interleukin-6, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in liver, while increasing nuclear factor erythroid 2-related factor-2 and superoxide dismutase-2 in kidney and interleukin-10 in liver. CONCLUSIONS: Mitotherapy decreased lung, liver, and kidney injury and increased survival rate in cecal ligation and puncture-induced sepsis.


Assuntos
Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Sepse/complicações , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Insuficiência de Múltiplos Órgãos
5.
Front Cell Dev Biol ; 9: 600711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659247

RESUMO

Extracellular vesicles (EVs) have emerged as a potential therapy for several diseases. These plasma membrane-derived fragments are released constitutively by virtually all cell types-including mesenchymal stromal cells (MSCs)-under stimulation or following cell-to-cell interaction, which leads to activation or inhibition of distinct signaling pathways. Based on their size, intracellular origin, and secretion pathway, EVs have been grouped into three main populations: exosomes, microvesicles (or microparticles), and apoptotic bodies. Several molecules can be found inside MSC-derived EVs, including proteins, lipids, mRNA, microRNAs, DNAs, as well as organelles that can be transferred to damaged recipient cells, thus contributing to the reparative process and promoting relevant anti-inflammatory/resolutive actions. Indeed, the paracrine/endocrine actions induced by MSC-derived EVs have demonstrated therapeutic potential to mitigate or even reverse tissue damage, thus raising interest in the regenerative medicine field, particularly for lung diseases. In this review, we summarize the main features of EVs and the current understanding of the mechanisms of action of MSC-derived EVs in several lung diseases, such as chronic obstructive pulmonary disease (COPD), pulmonary infections [including coronavirus disease 2019 (COVID-19)], asthma, acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), among others. Finally, we list a number of limitations associated with this therapeutic strategy that must be overcome in order to translate effective EV-based therapies into clinical practice.

6.
Front Neurol ; 11: 1001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013661

RESUMO

Background: There is widespread debate regarding the use of albumin in ischemic stroke. We tested the hypothesis that an iso-oncotic solution of albumin (5%), administered earlier after acute ischemic stroke (3 h), could provide neuroprotection without causing kidney damage, compared to a hyper-oncotic albumin (20%) and saline. Objective: To compare the effects of saline, iso-oncotic albumin, and hyper-oncotic albumin, all titrated to similar hemodynamic targets, on the brain and kidney. Methods: Ischemic stroke was induced in anesthetized male Wistar rats (n = 30; weight 437 ± 68 g) by thermocoagulation of pial blood vessels of the primary somatosensory, motor, and sensorimotor cortices. After 3 h, animals were anesthetized and randomly assigned (n = 8) to receive 0.9% NaCl (Saline), iso-oncotic albumin (5% ALB), and hyper-oncotic albumin (20% ALB), aiming to maintain hemodynamic stability (defined as distensibility index of inferior vena cava <25%, mean arterial pressure >80 mmHg). Rats were then ventilated using protective strategies for 2 h. Of these 30 animals, 6 were used as controls (focal ischemic stroke/no fluid). Results: The total fluid volume infused was higher in the Saline group than in the 5% ALB and 20% ALB groups (mean ± SD, 4.3 ± 1.6 vs. 2.7 ± 0.6 and 2.6 ± 0.5 mL, p = 0.03 and p = 0.02, respectively). The total albumin volume infused (g/kg) was higher in the 20% ALB group than in the 5% ALB group (1.4 ± 0.6 vs. 0.4 ± 0.2, p < 0.001). Saline increased neurodegeneration (Fluoro-Jade C staining), brain inflammation in the penumbra (higher tumor necrosis factor-alpha expression), and blood-brain barrier damage (lower gene expressions of claudin-1 and zona occludens-1) compared to both iso-oncotic and hyper-oncotic albumins, whereas it reduced the expression of brain-derived neurotrophic factor (a marker of neuroregeneration) compared only to iso-oncotic albumin. In the kidney, hyper-oncotic albumin led to greater damage as well as higher gene expressions of kidney injury molecule-1 and interleukin-6 than 5% ALB (p < 0.001). Conclusions: In this model of focal ischemic stroke, only iso-oncotic albumin had a protective effect against brain and kidney damage. Fluid therapy thus requires careful analysis of impact not only on the brain but also on the kidney.

7.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L908-L925, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901521

RESUMO

Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos
8.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L823-L831, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553626

RESUMO

Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow-derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration-dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Meios de Cultivo Condicionados/farmacologia , Fibrose Cística/terapia , Células-Tronco Mesenquimais/citologia , Pneumonia/terapia , Síndrome do Desconforto Respiratório/terapia , Fibrose Cística/imunologia , Fibrose Cística/patologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
9.
Eur J Pharmacol ; 843: 251-259, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30481497

RESUMO

Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling. Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and - 2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren't fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario. Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated. CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1 levels and lung function in asthmatic patients. CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.


Assuntos
Antiasmáticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Canabidiol/uso terapêutico , Pulmão/efeitos dos fármacos , Alérgenos , Animais , Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Canabidiol/farmacologia , Citocinas/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Escarro/química
10.
Stem Cells Transl Med ; 8(3): 301-312, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30426724

RESUMO

Asthma is a chronic inflammatory disease characterized by airway inflammation and remodeling, which can lead to progressive decline of lung function. Although mesenchymal stromal cells (MSCs) have shown beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been limited. Mounting evidence suggests that prior exposure of MSCs to specific inflammatory stimuli or environments can enhance their immunomodulatory properties. Therefore, we investigated whether stimulating MSCs with bronchoalveolar lavage fluid (BALF) or serum from asthmatic mice could potentiate their therapeutic properties in experimental asthma. In a house dust mite (HDM) extract asthma model in mice, unstimulated, asthmatic BALF-stimulated, or asthmatic serum-stimulated MSCs were administered intratracheally 24 hours after the final HDM challenge. Lung mechanics and histology; BALF protein, cellularity, and biomarker levels; and lymph-node and bone marrow cellularity were assessed. Compared with unstimulated or BALF-stimulated MSCs, serum-stimulated MSCs further reduced BALF levels of interleukin (IL)-4, IL-13, and eotaxin, total and differential cellularity in BALF, bone marrow and lymph nodes, and collagen fiber content, while increasing BALF IL-10 levels and improving lung function. Serum stimulation led to higher MSC apoptosis, expression of various mediators (transforming growth factor-ß, interferon-γ, IL-10, tumor necrosis factor-α-stimulated gene 6 protein, indoleamine 2,3-dioxygenase-1, and IL-1 receptor antagonist), and polarization of macrophages to M2 phenotype. In conclusion, asthmatic serum may be a novel strategy to potentiate therapeutic effects of MSCs in experimental asthma, leading to further reductions in both inflammation and remodeling than can be achieved with unstimulated MSCs. Stem Cells Translational Medicine 2019;8:301&312.


Assuntos
Asma/imunologia , Asma/terapia , Células-Tronco Mesenquimais/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Interleucina-10/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Pulmão/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos BALB C
11.
Front Immunol ; 9: 1147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881388

RESUMO

Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-ß1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-ß), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.


Assuntos
Asma/metabolismo , Ácido Eicosapentaenoico/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Asma/etiologia , Asma/patologia , Asma/terapia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Feminino , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Muco/metabolismo , Timo/imunologia , Timo/metabolismo
12.
Stem Cell Res Ther ; 8(1): 220, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974252

RESUMO

BACKGROUND: Experimental research has reported beneficial effects of mesenchymal stromal cell (MSC) therapy in pulmonary arterial hypertension (PAH). However, these studies either were based on prophylactic protocols or assessed basic remodeling features without evaluating possible mechanisms. We analyzed the effects of MSC therapy on lung vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. METHODS: Twenty-eight Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, while a control group received saline (SAL) instead. On day 14, both groups were further randomized to receive 105 adipose-derived MSCs or SAL intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP) and the gene expression of mediators associated with apoptosis, inflammation, fibrosis, Smad-1 levels, cell proliferation, and endothelial-mesenchymal transition were determined. In addition, lung histology (smooth muscle cell proliferation and plexiform-like injuries), CD68+ and CD163+ macrophages, and plasma levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were evaluated. RESULTS: In the PAH group, adipose-derived MSCs, compared to SAL, reduced mean RVSP (29 ± 1 vs 39 ± 2 mmHg, p < 0.001), lung tissue collagen fiber content, smooth muscle cell proliferation, CD68+ macrophages, interleukin-6 expression, and the antiapoptotic mediators Bcl-2 and survivin. Conversely, expression of the proapoptotic mediator procaspase-3 and plasma VEGF increased, with no changes in PDGF. In the pulmonary artery, MSCs dampened the endothelial-mesenchymal transition. CONCLUSION: In MCT-induced PAH, MSC therapy reduced lung vascular remodeling, thus improving hemodynamics. These beneficial effects were associated with increased levels of proapoptotic markers, mesenchymal-to-endothelial transition, reduced cell proliferation markers, and inflammation due to a shift away from the M1 phenotype.


Assuntos
Tecido Adiposo/citologia , Hemodinâmica/fisiologia , Hipertensão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Proliferação de Células , Colágeno/genética , Colágeno/metabolismo , Regulação da Expressão Gênica , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monocrotalina , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína Smad1/genética , Proteína Smad1/metabolismo , Survivina , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/genética
13.
Stem Cells Transl Med ; 6(6): 1557-1567, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28425576

RESUMO

Mesenchymal stromal cells (MSCs) from different sources have differential effects on lung injury. To compare the effects of murine MSCs from bone marrow (BM), adipose tissue (AD), and lung tissue (LUNG) on inflammatory and remodeling processes in experimental allergic asthma, female C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) or saline (C). Twenty-four hours after the last challenge, mice received either saline (50 µl, SAL), BM-MSCs, AD-MSCs, or LUNG-MSCs (105 cells per mouse in 50 µl total volume) intratracheally. At 1 week, BM-MSCs produced significantly greater reductions in resistive and viscoelastic pressures, bronchoconstriction index, collagen fiber content in lung parenchyma (but not airways), eosinophil infiltration, and levels of interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß, and vascular endothelial growth factor (VEGF) in lung homogenates compared to AD-MSCs and LUNG-MSCs. Only BM-MSCs increased IL-10 and interferon (IFN)-γ in lung tissue. In parallel in vitro experiments, BM-MSCs increased M2 macrophage polarization, whereas AD-MSCs and LUNG-MSCs had higher baseline levels of IL-4, insulin-like growth factor (IGF), and VEGF secretion. Exposure of MSCs to serum specimens obtained from asthmatic mice promoted reductions in secretion of these mediators, particularly in BM-MSCs. Intratracheally administered BM-MSCs, AD-MSCs, and LUNG-MSCs were differentially effective at reducing airway inflammation and remodeling and improving lung function in the current model of allergic asthma. In conclusion, intratracheal administration of MSCs from BM, AD, and LUNG were differentially effective at reducing airway inflammation and remodeling and improving lung function comparably reduced inflammation and fibrogenesis in this asthma model. However, altered lung mechanics and lung remodeling responded better to BM-MSCs than to AD-MSCs or LUNG-MSCs. Moreover, each type of MSC was differentially affected in a surrogate in vitro model of the in vivo lung environment. Stem Cells Translational Medicine 2017;6:1557-1567.


Assuntos
Asma/terapia , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/metabolismo , Feminino , Pulmão/citologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos Endogâmicos C57BL , Traqueia/citologia
14.
Front Physiol ; 7: 457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774071

RESUMO

Many experimental models have been proposed to study the pathophysiological features of emphysema, as well as to search for new therapeutic approaches for acute or chronically injured lung parenchyma. We aimed to characterize an emphysema model induced by multiple instillations of elastase by tracking changes in inflammation, remodeling, and cardiac function after each instillation. Forty-eight C57BL/6 mice were randomly assigned across two groups. Emphysema (ELA) animals received 1, 2, 3, or 4 intratracheal instillations of pancreatic porcine elastase (PPE, 0.2 IU) with a 1-week interval between them. Controls (C) received saline following the same protocol. Before and after implementation of the protocol, animals underwent echocardiographic analysis. After the first instillation of PPE, the percentage of mononuclear cells in the lung parenchyma increased compared to C (p = 0.0001). The second instillation resulted in hyperinflated alveoli, increased mean linear intercept, and reduced elastic fiber content in lung parenchyma compared to C (p = 0.0197). Following the third instillation, neutrophils and collagen fiber content in alveolar septa and airways increased, whereas static lung elastance was reduced compared to C (p = 0.0094). After the fourth instillation, the percentage of M1 macrophages in lungs; levels of interleukin-1ß (IL-1ß), keratinocyte-derived chemokine, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF); and collagen fiber content in the pulmonary vessel wall were increased compared to C (p = 0.0096). At this time point, pulmonary arterial hypertension was apparent, with increased diastolic right ventricular wall thickness. In conclusion, the initial phase of emphysema was characterized by lung inflammation with predominance of mononuclear cells, whereas at the late stage, impairment of pulmonary and cardiovascular functions was observed. This model enables analysis of therapies at different time points during controlled progression of emphysema. Accordingly, early interventions could focus on the inflammatory process, while late interventions should focus on restoring cardiorespiratory function.

15.
Stem Cell Res Ther ; 7(1): 53, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075363

RESUMO

Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.


Assuntos
Asma/terapia , Vesículas Extracelulares/transplante , Hipertensão Pulmonar/terapia , Lesão Pulmonar/terapia , Células-Tronco Mesenquimais/química , Pneumonia Bacteriana/terapia , Síndrome do Desconforto Respiratório/terapia , Asma/metabolismo , Asma/fisiopatologia , DNA/uso terapêutico , Endocitose , Vesículas Extracelulares/química , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Lipídeos/uso terapêutico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/uso terapêutico , Terapia de Alvo Molecular , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/fisiopatologia , Proteínas/uso terapêutico , RNA Mensageiro/uso terapêutico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia
16.
Stem Cell Res Ther ; 6: 230, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26611795

RESUMO

Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; however, expanded EPCs may represent an even better approach for vascular repair. To date, no study has compared the effects of non-expanded EPCs (EPC-NEXP) with those of expanded EPCs (EPC-EXP) and mesenchymal stromal cells of human (MSC-HUMAN) and mouse (MSC-MICE) origin in experimental sepsis. One day after cecal ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP, MSC-HUMAN or MSC-MICE (1 × 10(5)) intravenously. EPC-EXP, EPC-NEXP, MSC-HUMAN, and MSC-MICE displayed differences in phenotypic characterization. On days 1 and 3, cecal ligation and puncture mice showed decreased survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups. IL-1ß levels decreased in the EPC-EXP group, while IL-10 decreased in the MSC-MICE. IL-6 levels decreased both in the EPC-EXP and MSC-MICE groups. Vascular endothelial growth factor levels were reduced regardless of therapy. In conclusion, EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice.


Assuntos
Células Progenitoras Endoteliais , Lesão Pulmonar/terapia , Sepse/complicações , Antígeno AC133 , Animais , Antígenos CD , Proliferação de Células , Sangue Fetal , Glicoproteínas , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos , Fenótipo , Testes de Função Respiratória
17.
Front Physiol ; 6: 267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483698

RESUMO

Emphysema is an intractable pulmonary disease characterized by an inflammatory process of the airways and lung parenchyma and ongoing remodeling process in an attempt to restore lung structure. There is no effective drug therapy that regenerates lung tissue or prevents the progression of emphysema; current treatment is aimed at symptomatic relief. We hypothesized that LASSBio-596, a molecule with potent anti-inflammatory and immunomodulatory effects, might reduce pulmonary inflammation and remodeling and thus improve lung function in experimental emphysema. Emphysema was induced in BALB/c mice by intratracheal administration of porcine pancreatic elastase (0.1 IU) once weekly during 4 weeks. A control group received saline using the same protocol. After the last instillation of saline or elastase, dimethyl sulfoxide, or LASSBio-596 were administered intraperitoneally, once daily for 8 days. After 24 h, in elastase-induced emphysema animals, LASSBio-596 yielded: (1) decreased mean linear intercept, hyperinflation and collagen fiber content, (2) increased elastic fiber content, (3) reduced number of M1 macrophages, (4) decreased tumor necrosis factor-α, interleukin-1ß, interleukin-6, and transforming growth factor-ß protein levels in lung tissue, and increased vascular endothelial growth factor. These changes resulted in increased static lung elastance. In conclusion, LASSBio-596 therapy reduced lung inflammation, airspace enlargement, and small airway wall remodeling, thus improving lung function, in this animal model of elastase-induced emphysema.

18.
J. coloproctol. (Rio J., Impr.) ; 35(2): 77-82, Apr-Jun/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-752417

RESUMO

Introduction: An accurate preoperative rectal cancer staging is crucial to the correct management of the disease. Despite great controversy around this issue, pelvic magnetic resonance (RM) is said to be the imagiologic standard modality. This work aimed to evaluate magnetic resonance accuracy in preoperative rectal cancer staging comparing with the anatomopathological results. Methods: We calculated sensibility, specificity, positive (VP positive) and negative (VP negative) predictive values for each T and N. We evaluated the concordance between both methods of staging using the Cohen weighted K (Kw), and through ROC curves, we evaluated magnetic resonance accuracy in rectal cancer staging. Results: 41 patients met the inclusion criteria. We achieved an efficacy of 43.9% for T and 61% for N staging. The respective sensibility, specificity, positive and negative predictive values are 33.3%, 94.7%, 33.3% and 94.7% for T1; 62.5%, 32%, 37.0% and 57.1% for T2; 31.8%, 79%, 63.6% and 50% for T3 and 27.8%, 87%, 62.5% and 60.6% for N. We obtained a poor concordance for T and N staging and the anatomopathological results. The ROC curves indicated that magnetic resonance is ineffective in rectal cancer staging. Conclusion: Magnetic resonance has a moderate efficacy in rectal cancer staging and the major difficulty is in differentiating T2 and T3. (AU)


Introdução: Um estadiamento pré-operatório do Câncer do Reto (CR) é essencial na gestão da doença. Apesar de grande controvérsia, a ressonância magnética pélvica (RM) é apontada como modalidade imagiológica standard. Com este trabalho pretendeu-se avaliar a acuidade da RM no estadiamento do CR, comparando com os resultados anatomopatológicos da peça cirúrgica. Materiais e métodos: Calculou-se a sensibilidade, especificidade, valor preditivo positivo (VP positivo) e negativo (VP negativo) para T e N. Avaliou-se a concordância entre ambas as formas de estadiamento através do valor de K de Cohen ponderado (Kw) e, através de curvas ROC, avaliou-se a precisão do estadiamento por RM. Resultados: 41 doentes cumpriram os critérios de inclusão. Obteve-se uma eficácia de 43.9% para T e 61% para N. Verificou-se uma sensibilidade, especificidade, VP positivo e negativo, respectivamente, de 33.3%, 94.7%, 33.3% e 94.7% para T1, 62.5%, 32%, 37.0% e 57.1% para T2, 31.8%, 79%, 63.6% e 50% para T3, 27.8%, 87%, 62.5% e 60.6% para N. A concordância calculada foi pobre para T e N. As curvas ROC indicaram que o estadiamento do CR por RM foi ineficaz. Conclusão: A RM apresenta acuidade moderada no estadiamento do CR, onde a maior dificuldade está na distinção entre T2-T3. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Neoplasias Retais/patologia , Neoplasias Retais/diagnóstico por imagem , Neoplasias do Colo/patologia , Estadiamento de Neoplasias , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade
19.
Respir Res ; 15: 118, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25272959

RESUMO

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento
20.
Stem Cell Res Ther ; 5(5): 108, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25204389

RESUMO

INTRODUCTION: Asthma is characterized by a chronic inflammatory process which may lead to several changes in bone marrow cell composition. We hypothesized that bone marrow mononuclear cells (BMMCs) obtained from ovalbumin (OVA)-induced lung inflammation mice may promote different effects compared to BMMCs from healthy donors in a model of allergic asthma. METHODS: C57BL/6 mice were randomly assigned to two groups. In the OVA group, mice were sensitized and challenged with ovalbumin, while healthy animals (control group) received saline using the same protocol. BMMCs were analyzed by flow cytometry 24 hours after the last challenge. After BMMC characterization, another group of OVA mice were further randomized into three subgroups to receive intratracheal saline (BMMC-SAL), BMMCs from control or BMMCs from OVA mice (BMMC-Control and BMMC-OVA, respectively; 2x106 cells/mouse), 24 hours after the last challenge. RESULTS: BMMC-OVA exhibited an increased percentage of eosinophils, monocytes and hematopoietic precursors, while mesenchymal stem cells decreased, as compared with BMMC-Control. BMMCs from both donor groups reduced airway resistance, alveolar collapse, bronchoconstriction index, eosinophil infiltration, collagen fiber content in alveolar septa and levels of interleukin (IL)-4, IL-5, IL-13, interferon-γ, transforming growth factor-ß, and vascular endothelial growth factor in lung homogenates. However, the benefits of BMMCs were significantly more pronounced when cells were obtained from control donors. CONCLUSION: Both BMMC-Control and BMMC-OVA reduced the inflammatory and remodeling processes; nevertheless, BMMC-Control led to a greater improvement in lung morphofunction, which may be due to different BMMC composition and/or properties.


Assuntos
Asma/terapia , Transplante de Medula Óssea/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Leucócitos Mononucleares/transplante , Pneumonia/patologia , Animais , Asma/imunologia , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/farmacologia , Pneumonia/imunologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...